

Diversity-Oriented Approach to CF₃CHF-, CF₃CFBr-, CF₃CF₂-, (CF₃)₂CH-, and CF₃(SCF₃)CH-Substituted Arenes from 1-(Diazo-2,2,2trifluoroethyl)arenes

Enrico Emer,^{†,⊥} Jack Twilton,^{†,⊥} Matthew Tredwell,[†] Samuel Calderwood,[†] Thomas Lee Collier,[§] Benoît Liégault,^{†,‡} Marc Taillefer,[‡] and Véronique Gouverneur*,[†]

Supporting Information

ABSTRACT: Arenes substituted with perfluoroalkyl groups are attractive targets for drug and agrochemical development. Exploiting the carbenic character of donor/acceptor diazo compounds, a diversity-oriented synthesis of perfluoroalkylated arenes, for late stage fluorofunctionalization, is described. The reaction of 1-(diazo-2,2,2-trifluoroethyl)arenes with HF, F/Br, F2, CF3H, and CF3SH sources give direct access to a variety of perfluoroalkyl-substituted arenes presenting with incremental fluorine content. The value of this approach is also demonstrated for radiochemistry and positron emission tomography with the [18F]-labeling of CF₃CHF-, CF₃CBrF-, and CF₃CF₂-arenes from [18F]fluoride.

Pluorine-containing arenes are an important class of aromatic motifs found in pharmaceuticals. Fluorine substitution affects docking interactions through contact with the protein and allows control over drug conformation; the presence of fluorine also influences physical and adsorption, distribution, metabolism, and excretion properties of a lead compound. Fluorine substitution is equally prominent in agrochemicals that have progressed to the point where their chemical structures, physical properties, and site-specific binding make them difficult to distinguish from pharmaceutical drugs.2 As a result, systematic fluorine scans emerge as a promising strategy in drug and agrochemical discovery. To date, most efforts have focused on late stage fluorination and trifluoromethylation of arenes.^{3,4} Synthetic work leading to higher-order perfluoroalkyl motifs for evaluation in the context of drug and agrochemical performance is less documented. If we consider the established therapeutic value of the CF₃CF₂containing drug Faslodex (fulvestrant), a selective estrogen receptor down-regulator indicated for the treatment of hormone receptor positive metastatic breast cancer. The preparation of perfluoroalkyl-substituted arenes with incremental fluorine content for comparative studies of their biological properties remains a laborious and time-consuming process since no synthesis is available to synthesize CF₃CHF-, CF₃CBrF-, CF₃CF₂-, (CF₃)(CF₃S)CH-, and (CF₃)₂CH-arenes from a common precursor through late stage fluorofunctionalization (Figure 1).

With these considerations in mind, we posited that a diversity-oriented strategy exploiting the carbenic character of donor/acceptor diazo compounds would be an attractive alternative to conventional strategies for Rf-arene library

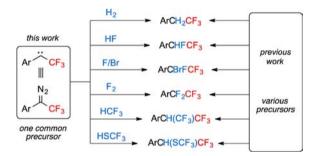


Figure 1. Branching pathway to perfluoroalkyl arenes: late stage fluorofunctionalization of 1-(diazo-2,2,2-trifluoroethyl)arenes.

synthesis.^{6,7} 1-(Diazo-2,2,2-trifluoroethyl)arenes emerged as prime candidates for this purpose since these known compounds are readily accessible from the parent trifluor-omethylketones, via the corresponding tosylhydrazones, and have been exploited in a range of transformations. The absence of reports on fluorine incorporation prompted us to interrogate the reactivity of 1-(diazo-2,2,2-trifluoroethyl)arenes toward α,α -functionalization via net HF, F/Br, F₂, CF₃H, and CF₃SH addition. Successful implementation of this branching pathway approach would offer a direct route to a range of aryl-Rf motifs with precise control over incremental fluorine substitution with the number of fluorine (n) into the products varying from n = 4-6. Incidentally, the addition of H_2 onto 1-(diazo-2,2,2-trifluoroethyl)arenes readily expands the diversity

Received: October 14, 2014 Published: November 7, 2014

6004

[†]Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.

[‡]Institut Charles Gerhardt Montpellier, UMR-CNRS 5253, AM2N, ENSCM 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[§]Advion BioSystems, 10 Brown Road, Suite 101, Ithaca, New York 14850 United States

Organic Letters Letter

scope to CF_3CH_2 -substituted arenes (n=3). An additional motivation to study late stage fluorination of 1-(diazo-2,2,2-trifluoroethyl)arenes for reactions using fluoride is to explore [^{18}F]-labeling and applications in positron emission tomography. Successful [^{18}F]-labeling could facilitate studies probing the impact of higher-order fluorination of arenes on in vivo biodistribution and in the broader context of drug and agrochemical discovery.

We began by preparing a selection of 1-(diazo-2,2,2-trifluoroethyl)arenes 1 applying an interrupted Bamford—Stevens reaction to a range of tosyl hydrazones; these precursors were obtained by reacting the corresponding aryl trifluoromethylketones with tosylhydrazide (Scheme 1). 11,12

Scheme 1. Preparation of 1-(Diazo-2,2,2-trifluoroethyl) arenes 1

4-(1-Diazo-2,2,2-trifluoroethyl)-1,1'-biphenyl 1b served as a model compound for validation of the various branching pathways toward distinct perfluoroalkyl motifs. We focused at first instance on hydrofluorination as a route to access 1,2,2,2tetrafluoroethyl-substituted arenes. 13 Literature methods for the preparation of these poorly explored target compounds are scarce. 14 One approach is the fluorination of α -trifluoromethyl alcohols with diethylaminosulfur trifluoride, a reaction conducted in DCM at -70 °C. ^{14a} An alternative strategy consists of subjecting various (1-aryl-2,2,2-trifluoroethyl)hexyl sulfides to oxidative fluorodesulfuration with Et₃N·3HF and the oxidant IF₅. ^{14b} We found that the reaction of 1b with HF-Py (HF ~70%, pyridine ~30%) at 0 °C afforded 2b in 92% yield (Scheme 2). This reaction was extended to a range of diazo precursors leading to the hydrofluorinated products in yields reaching 99%.

Scheme 2. Hydrofluorination of 1-(Diazo-2,2,2-trifluoroethyl)arenes 1a-k

N ₂	HF•Py (2.0 equiv)	CFa
R ii	CH ₂ Cl _{2,} 0 °C, 5 min	R
1a, R = H	52% ^a	2a
1b, R = 4-Ph	92%	2b
1c, R = 4-Me	77%	2c
1d, $R = 4-NO_2$	98%	2d
1e, R = 4-OMe	63%	2e
1f , $R = 4-CO_2Me$	90%	2f
1g, R = 4-Br	86%	2g
1h, $R = 4-(C=C-Cy)$	96%	2h
1i, $R = 3-(OC_7H_{15})$	99%	2i
1j, R = 3-Br-4-F	79%	2j
1k, R = 3-OMe-4-F	86%	2k

^{a19}F NMR yield using fluorobenzene as internal reference.

To investigate the bromofluorination reaction, 13 **1b** was initially reacted with *N*-bromosuccinimide (2 equiv) and HF·Py (8 equiv) in Et₂O at 0 °C. 7a Under these conditions, 50% conversion to the desired bromofluorinated product **3b** was reached after 24 h (Scheme 3). Further optimization of the reaction conditions led to the use of 4 equiv of NBS/HF·Py (1:2) in CH₂Cl₂ at 0 °C for full conversion after 5 min, with a yield of 81% of the isolated product **3b** (Scheme 3). The

Scheme 3. Bromofluorination of 1-(Diazo-2,2,2-trifluoroethyl)arenes 1a-i

N ₂	HF•Py (8.0 equiv) NBS (4.0 equiv)	F Br CF ₃
R#	CH ₂ Cl _{2,} 0 °C, 5 min	R
1a, R = H	59% ^a	3a
1b , R = 4-Ph	50% ^{a,b}	3b
1b , R = 4-Ph	81%	3b
1c, R = 4-Me	54%	3c
1d, $R = 4-NO_2$	67%	3d
1e, R = 4-0Me	54%	3e
1f, $R = 4-CO_2Me$	68%	3f
1g, R = 4-Br	65%	3g
1i, $R = 3-(OC_7H_{15})$	55%	3i

 a19 F NMR yield using fluorobenzene as internal reference. b Reaction run in Et₂O with 2 equiv of NBS over 24 h.

reaction was applied successfully to a series of substituted arenes 3a-i in yields ranging from 54 to 81%. 15

The late stage *geminal* difluorination of 1-(diazo-2,2,2-trifluoroethyl)arenes as a route to pentafluoroethyl-substituted arenes was considered next. Current methods to install the CF₃CF₂ motif onto arenes rely on metal-catalyzed cross-coupling methodologies and the use of perfluorinated building blocks. ¹⁶ These processes are not trivial to exploit for [18 F]-labeling. We were pleased to find that the difluorination of **1b** was successfully performed in a sealed tube by action of (difluoroiodo)toluene (*p*-TolIF₂)¹⁷ and 1 mol % of BF₃·OEt₂ (added as a stock solution in CH₂Cl₂) in chlorobenzene at 110 °C (Scheme 4). ⁷⁸ These reaction conditions provided **4b** in

Scheme 4. Geminal Difluorination of 1-(Diazo-2,2,2-trifluoroethyl)arenes 1b,d,f,i

52% isolated yield. The process was extended to diazo starting materials 1d, 1f, and 1i, bearing electron-withdrawing or electron-donating functional groups, producing the pentafluor-oethylarene products in moderate to good yields.

Hydrotrifluoromethylation was successfully accomplished by treating the model substrate 1b with trimethyl-(trifluoromethyl)silane¹⁸ and CsF in the presence of CuI in NMP/H₂O (Scheme 5a).^{7h} This reaction led to (1,1,1,3,3,3-hexafluoropropan-2-yl)arenes 5b, 5f, 5h, and 5i in moderate to very good yield. Using silver trifluoromethanethiolate (AgSCF₃) and CuCl instead of TMSCF₃ and CuI,^{7j} we accessed (2,2,2-trifluoro-1-phenylethyl)(trifluoromethyl)sulfane 6b in 77% yield via net hydrotrifluoromethylthiolation (Scheme 5b).¹⁹ Following the same procedure, compounds 6h and 6i were also obtained, albeit in lower yields.

For completeness, we also considered the conversion of 1-(diazo-2,2,2-trifluoroethyl)arenes into CF_3CH_2 -arenes.²⁰ Hydrogenation of **1b** was performed upon treatment with H_2 (1 atm) in MeOH in the presence of 10% of Pd/C (10% w/w) (Scheme 6). Under these conditions, **7b** and **7f** were isolated in 93 and 85% yield, respectively.

Organic Letters Letter

Scheme 5. Copper-Mediated HCF3 and HSCF3 Addition

Scheme 6. Palladium-Catalyzed Hydrogenation of 1-(Diazo-2,2,2-trifluoroethyl)arenes 1b and 1f

Our ongoing interest in carbene reactivity for [¹⁸F] radiochemistry²¹ prompted us to investigate 1-(diazo-2,2,2-trifluoroethyl)arenes as precursors to [¹⁸F]-labeled CF₃CHF-, CF₃CBrF-, and CF₃CF₂-arenes using cyclotron-produced [¹⁸F]fluoride (Scheme 7). To the best of our knowledge,

Scheme 7. [¹⁸F]-Labeling of CF₃CHF-, CF₃CBrF-, and CF₃CF₂-Arenes from [¹⁸F]Fluoride

there is no report in the literature on the labeling of these aromatic motifs; the radiochemistry available to date to access the nonaromatic CF_3CF_2 -containing radiotracer EF5 does not employ [^{18}F]fluoride but requires [^{18}F] F_2 addition across the corresponding trifluoroalkene.

The reaction of **1b** (8 mg) with either [^{18}F]KF/K $_{222}$ or [^{18}F]Et $_4$ NF (\sim 30 MBq), in DCM (300 μ L) at room temperature for 20 min, gave none of the desired hydrofluorinated product, [^{18}F]**2b**, the only radioactive component present being unreacted [^{18}F]fluoride. When the reaction was performed using [^{18}F]Et $_4$ NF in the presence of 1 μ L of HF·Py, [^{18}F]**2b** was formed in 64 \pm 3% RCY (n = 4) as determined by radio-TLC and HPLC. [^{18}F]KF/K $_{222}$ led to product formation,

but $[^{18}F]$ Et₄NF was used in subsequent fluorinations as it was found to give more consistent results. We next examined the bromofluorination of **1b** with NBS. Treatment of **1b** (8 mg) with $[^{18}F]$ Et₄NF (~30 MBq), NBS (12 mg), and HF·Py (1 μ L) in DCM (300 μ L) at room temperature for 20 min gave $[^{18}F]$ 3b in 47 ± 4% RCY (n = 4) in addition to $[^{18}F]$ 2b in 12 ± 2% RCY. As observed for the hydrofluorination, no reaction occurred in the absence of carrier-added HF·Py. The geminal difluorination of **1b** was carried out in the presence of p-TollF₂ (6 mg) and Sn(OTf)₂ (1 mg) with $[^{18}F]$ Et₄NF in DCM to give pentafluoroethyl arene $[^{18}F]$ 4b in 16 ± 3% RCY. The hydrofluorinated product $[^{18}F]$ 2b was formed as additional separable labeled product in 7 ± 1% RCY. No additional HF·Py was required for this reaction to proceed.

In conclusion, a new strategy to generate ArCHFCF₃, ArCBrFCF₃, ArCF₂CF₃, ArCH(CF₃)₂, and ArCH(CF₃)(SCF₃) was developed through formal α,α -diffunctionalization of 1-(diazo-2,2,2-trifluoroethyl) arenes with nucleophilic F⁻, CF₃⁻, and CF₃S⁻ sources. Several salient features of this new approach include its diversity-oriented approach, simplicity of operation, and good substrate scope. Easy access to the unexploited or new motifs ArCHFCF₃ and ArCH(CF₃)(SCF₃) may encourage studies aimed at delineating the particularities of these fluorinated groups, for example, through a combination of bond vector analysis and/or polarity and lipophilicity measurements. An additional feature of this diversity-oriented strategy is its bespoke design for [18F]-labeling. We are aware that the carrier-added nature of the protocols we have developed may narrow the range of applications of this new [18F] technology, but to the best of our knowledge, this is the first report allowing for the labeling of CF2CF3 from [18F]fluoride, not from [18F]F₂. We also disclose the first examples of [18F]-labeled ArCHFCF3 and ArCBrFCF3 motifs. These merits should find useful applications especially in the field of radiotracer development for clinical applications and for drug discovery.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: veronique.gouverneur@chem.ox.a.uk.

Author Contributions

¹E.E. and J. T. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by the EU (Marie Curie Fellowship, E.E., PIEF-GA-2011-300774), the EPSRC/CRUK (M.T., A16466), the MRC (S.C., DMC1M12), and Advion (S.C.). V.G. is holding a Royal Society Wolfson Research Merit Award. The authors thank Florence Hardy (University of Oxford) for the synthesis of selected starting materials.

Organic Letters Letter

REFERENCES

- (1) For reviews, see: (a) Bégué, J.-P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992–1012. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886. (c) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330. (e) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359–4369. (f) Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; Wiley-Blackwell: New York, 2009. (g) Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications; Gouverneur, V., Muller, K., Eds.; Imperial College Press: London, 2012. (h) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432–2506. (i) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J. L.; Izawa, K.; Liu, H.; Soloshonok, V. A. J. Fluorine Chem. 2014, 167, 37–54.
- (2) For reviews, see: (a) Theodoridis, G. In Advances in Fluorine Science: Fluorine and the Environment—Agrochemicals, Archaeology, Green Chemistry & Water; Tressaud, A., Ed.; Elsevier: Amsterdam, 2006; Vol. 2, pp 121–175. (b) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16–29.
- (3) For selected reviews on arene fluorination, see: (a) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804–1821. (b) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929–2942. (c) Campbell, M. G.; Ritter, T. Org. Process. Rev. Dev. 2014, 18, 474–480.
- (4) For selected reviews on arene trifluoromethylation, see: (a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475–4521. (b) Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 34, 6679–6687. See also ref 1i.
- (5) Robertson, J. F. R.; Come, S. E.; Jones, S. E.; Beex, F.; Kaufmann, M.; Makris, A.; Nortier, J. W. R.; Possinger, K.; Rutqvist, L.-E. *Eur. J. Cancer* **2005**, *41*, 346–356.
- (6) For general reviews on diazo compounds, see: (a) Regitz, M.; Maas, G. In *Diazo Compounds: Properties and Syntheses*; Academic Press: Orlando, FL, 1986. (b) Ye, T.; McKervey, M. A. *Chem. Rev.* 1994, 94, 1091–1160. (c) Doyle, M. P.; McKervey, M. A.; Ye, T. *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds*; Wiley: Chichester, UK, 1998. (d) Davies, H. M. L.; Denton, J. R. *Chem. Soc. Rev.* 2009, 38, 3061–3071.
- (7) For selected examples of fluorofunctionalization of diazo compounds, see the following. For hydro- and/or halofluorination: (a) Olah, G. A.; Welch, J. Synthesis 1974, 896-898. (b) Takeuchi, Y.; Takagi, K.; Yamaba, T.; Nabetani, M.; Koizumi, Y. J. Fluorine Chem. 1994, 68, 149-154. (c) Doherty, G.; Cook, A. Patent WO 2008/ 024746 A1, 2008. (d) Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 12077-12079. (e) Qin, C.; Davies, H. M. L. Org. Lett. 2013, 15, 6152-6154. (f) Yadav, A. K.; Srivastava, V. P.; Yadav, L. D. S. Chem. Commun. 2013, 49, 2154-2156. For difluorination: (g) Tao, J.; Tran, R.; Murphy, G. K. J. Am. Chem. Soc. 2013, 135, 16312-16315. For hydrotrifluoromethylation: (h) Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257-15260. For hydrotrifluoromethylthiolation: (i) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 3093-3096. (j) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J. Org. Lett. 2014, 16, 2030-2033. (k) Lefebvre, Q.; Fava, E.; Nikolaienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617-6619. For bis(trifluoromethylthiolation), see ref 7k.
- (8) For a review on trifluoromethylketones, see: Kelly, C. B.; Mercadantea, M. A.; Leadbeater, N. E. *Chem. Commun.* **2013**, 49, 11133–11148.
- (9) For the preparation of 1-(diazo-2,2,2-trifluoroethyl)arenes, see: (a) Shepard, R. A.; Wentworth, S. E. J. Org. Chem. 1967, 32, 3197–3199. (b) Shi, G.; Xu, Y. J. Fluorine Chem. 1990, 46, 173–178.
- (10) For examples of functionalization of 1-(diazo-2,2,2-trifluoroethyl)arenes, see: (a) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 9, 2625–2628. (b) Uehara, M.; Suematsu, H.; Yasutomi, Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170–171. (c) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135,

- 5364–5367. (d) Wang, X.; Xu, Y.; Deng, Y.; Zhou, Y.; Feng, J.; Ji, G.; Zhang, Y.; Wang, J. Chem.—Eur. J. 2014, 961–965.
- (11) Overall yields for the synthesis of diazo compounds 1 are generally modest.
- (12) All diazo compounds reported in this paper were purified by silica gel column chromatography, stored in a freezer under air, and, in our hands, found to be stable for months. See Supporting Information for details.
- (13) For a comparative study employing the corresponding aryl diazo esters, see Supporting Information.
- (14) For other methods leading to ArCHFCF₃, see: (a) Anilkumar, R.; Burton, D. J. *Tetrehedron Lett.* **2003**, 44, 6661–6664. (b) Tahara, R.; Fukuhara, T.; Hara, S. *J. Fluorine Chem.* **2011**, 132, 579–586.
- (15) To the best of our knowledge, only one method for the synthesis of the ArCFBrCF₃ motif has been reported to date. See: Winter, R. W.; Dodean, R.; Smith, J. A.; Anilkumar, R.; Burton, D. J.; Gard, G. L. *J. Fluorine Chem.* **2005**, *126*, 1202–1214.
- (16) For alternative methods towards ArCF₂CF₃, see: (a) Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128, 1318–1325. (b) Büttner, S.; Lubbe, M.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2008, 64, 7968–7976. (c) Kremlev, M. M.; Tyrra, W.; Mushta, A. I.; Naumann, D.; Yagupolskii, Y. L. J. Fluorine Chem. 2010, 131, 212–216. (d) Tahara, R.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2011, 132, 579–586. (e) Schareina, T.; Wu, X.-F.; Zapf, A.; Cotté, A.; Beller, M. Top. Catal. 2012, 55, 426–431. (f) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456–3459. (g) Litvinas, N. D.; Fier, P. S.; Harwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 536–539. (h) Zatolochnaya, O. V.; Gevorgyan, V. Org. Lett. 2013, 15, 2562–2565. (i) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Adv. Synth. Catal. 2013, 355, 2203–2207. (j) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett. 2014, 16, 1744–1747.
- (17) For a review, see: (a) Yoneda, N. J. Fluorine Chem. **2004**, 125, 7–17. For a recent example, see: (b) Arrica, M. A.; Wirth, T. Eur. J. Org. Chem. **2005**, 395–400. See also ref 7g.
- (18) The use of $TMSC_2F_5$ in place of $TMSCF_3$ led to the formation of olefin S'b.

- (19) Klabunde, K. J.; Burton, D. J. J. Am. Chem. Soc. 1972, 94, 820–828.
- (20) For recent methods towards ArCH₂CF₃, see: (a) Kawai, H.; Furukawa, T.; Nomura, Y.; Tokunaga, E.; Shibata, N. *Org. Lett.* **2011**, 13, 3596–3599. (b) Zhao, Y.; Hu, J. *Angew. Chem., Int. Ed.* **2012**, 51, 1033–1036. (c) Zhu, L.; Liu, S.; Douglas, J. T.; Altman, R. A. *Chem.—Eur. J.* **2013**, 12800–12805. (d) Song, W.; Lackner, S.; Ackermann, L. *Angew. Chem., Int. Ed.* **2014**, 53, 2477–2480. (e) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. *J. Org. Chem.* **2014**, 79, 7122–7131 and references therein.
- (21) Huiban, M.; Tredwell, M.; Mizuta, S.; Wan, Z.; Zhang, X.; Collier, T. L.; Gouverneur, V.; Passchier, J. *Nat. Chem.* **2013**, *5*, 941–944.
- (22) EF5: [2-(2-nitro-1*H*-imidazol-1-yl)-*N*-(2,2,3,3-pentafluoropropyl)acetamide]. (a) Evans, S. M.; Fraker, D.; Hahn, S. M.; Gleason, K.; W. Jenkins, W. T.; Jenkins, K.; Hwang, W.; Zhang, P.; Mick, R.; Koch, C. J. *Int. J. Radiat. Oncol. Biol. Phys.* **2006**, *64*, 922–927. (b) Dolbiera, W. R., Jr.; Lia, A.; Koch, C. J.; Shiuec, C.; Kachurb, A. V. *Appl. Radiat. Isot.* **2001**, *54*, 73–80. (c) Ziemer, L. S.; Evans, S. M.; Kachur, A. V.; Shuman, A. L.; Cardi, C. A.; Jenkins, W. T.; Karp, J. S.; Alavi, A.; Dolbier, W. R., Jr.; Koch, C. J. *Eur. J. Nucl. Med.* **2003**, *30*, 259–266.